143 research outputs found

    Astrometric microlensing by local dark matter subhalos

    Get PDF
    High-resolution N-body simulations of dark matter halos indicate that the Milky Way contains numerous subhalos. When a dark matter subhalo passes in front of a star, the light from that star will be deflected by gravitational lensing, leading to a small change in the star's apparent position. This astrometric microlensing signal depends on the inner density profile of the subhalo and can be greater than a few microarcseconds for an intermediate-mass subhalo (M vir ≳ 104 M ⊙) passing within arcseconds of a star. Current and near-future instruments could detect this signal, and we evaluate the Space Interferometry Mission's (SIM's), Gaia's, and ground-based telescopes' potential as subhalo detectors. We develop a general formalism to calculate a subhalo's astrometric lensing cross section over a wide range of masses and density profiles, and we calculate the lensing event rate by extrapolating the subhalo mass function predicted by simulations down to the subhalo masses potentially detectable with this technique. We find that, although the detectable event rates are predicted to be low on the basis of current simulations, lensing events may be observed if the central regions of dark matter subhalos are more dense than current models predict (≳1 M ⊙ within 0.1 pc of the subhalo center). Furthermore, targeted astrometric observations can be used to confirm the presence of a nearby subhalo detected by gamma-ray emission. We show that, for sufficiently steep density profiles, ground-based adaptive optics astrometric techniques could be capable of detecting intermediate-mass subhalos at distances of hundreds of parsecs, while SIM could detect smaller and more distant subhalos

    Evry Flare .iv. Detection of Periodicity in Flare Occurrence from Cool Stars with TESS

    Get PDF
    Phased flaring, or the periodic occurrence of stellar flares, may probe electromagnetic star-planet interaction (SPI), binary interaction, or magnetic conditions in spots. For the first time, we explore flare periodograms for a large sample of flare stars to identify periodicity due to magnetic interactions with orbiting companions, magnetic reservoirs, or rotational phase. Previous large surveys have explored periodicity at the stellar rotation period, but we do not assume periods must correspond with rotation in this work. Two-minute TESS light curves of 284 cool stars are searched for periods of 1-10 days using two newly developed periodograms. Because flares are discrete events in noisy and incomplete data, typical periodograms are not well suited to detect phased flaring. We construct and test a new Bayesian likelihood periodogram and a modified Lomb-Scargle periodogram. We find six candidates with a false-alarm probability below 1%. Three targets are ≥3σ detections of flare periodicity; the others are plausible candidates that cannot be individually confirmed. Periods range from 1.35 to 6.7 days and some, but not all, correlate with the stellar rotation period or its 1/2 alias. Periodicity from two targets may persist from TESS Cycle 1 into Cycle 3. The periodicity does not appear to persist for the others. Long-term changes in periodicity may result from the spot evolution observed from each candidate, which suggests magnetic conditions play an important role in sustaining periodicity

    Evry Flare .iv. Detection of Periodicity in Flare Occurrence from Cool Stars with TESS

    Get PDF
    Phased flaring, or the periodic occurrence of stellar flares, may probe electromagnetic star-planet interaction (SPI), binary interaction, or magnetic conditions in spots. For the first time, we explore flare periodograms for a large sample of flare stars to identify periodicity due to magnetic interactions with orbiting companions, magnetic reservoirs, or rotational phase. Previous large surveys have explored periodicity at the stellar rotation period, but we do not assume periods must correspond with rotation in this work. Two-minute TESS light curves of 284 cool stars are searched for periods of 1-10 days using two newly developed periodograms. Because flares are discrete events in noisy and incomplete data, typical periodograms are not well suited to detect phased flaring. We construct and test a new Bayesian likelihood periodogram and a modified Lomb-Scargle periodogram. We find six candidates with a false-alarm probability below 1%. Three targets are ≥3σ detections of flare periodicity; the others are plausible candidates that cannot be individually confirmed. Periods range from 1.35 to 6.7 days and some, but not all, correlate with the stellar rotation period or its 1/2 alias. Periodicity from two targets may persist from TESS Cycle 1 into Cycle 3. The periodicity does not appear to persist for the others. Long-term changes in periodicity may result from the spot evolution observed from each candidate, which suggests magnetic conditions play an important role in sustaining periodicity

    Dynamic Bayesian Combination of Multiple Imperfect Classifiers

    Get PDF
    Classifier combination methods need to make best use of the outputs of multiple, imperfect classifiers to enable higher accuracy classifications. In many situations, such as when human decisions need to be combined, the base decisions can vary enormously in reliability. A Bayesian approach to such uncertain combination allows us to infer the differences in performance between individuals and to incorporate any available prior knowledge about their abilities when training data is sparse. In this paper we explore Bayesian classifier combination, using the computationally efficient framework of variational Bayesian inference. We apply the approach to real data from a large citizen science project, Galaxy Zoo Supernovae, and show that our method far outperforms other established approaches to imperfect decision combination. We go on to analyse the putative community structure of the decision makers, based on their inferred decision making strategies, and show that natural groupings are formed. Finally we present a dynamic Bayesian classifier combination approach and investigate the changes in base classifier performance over time.Comment: 35 pages, 12 figure

    Robotilter: An automated lens/CCD alignment system for the Evryscope

    Get PDF
    Camera lenses are increasingly used in wide-field astronomical surveys due to their high performance, wide field-of-view (FOV) unreachable from traditional telescope optics, and modest cost. The machining and assembly tolerances for commercially available optical systems cause a slight misalignment (tilt) between the lens and CCD, resulting in point spread function (PSF) degradation. We have built an automated alignment system (Robotilters) to solve this challenge, optimizing four degrees of freedom-two tilt axes, a separation axis (the distance between the CCD and lens), and the lens focus (the built-in focus of the lens by turning the lens focusing ring, which moves the optical elements relative to one another) in a compact and low-cost package. The Robotilters remove tilt and optimize focus at the sub-10-μm level, are completely automated, take ≈2 h to run, and remain stable for multiple years once aligned. The Robotilters were built for the Evryscope telescope (a 780-MPix 22-camera array with an 8150-sq. deg FOV and continuous 2-min cadence) designed to detect short-timescale events across extremely large sky areas simultaneously. Variance in quality across the image field, especially the corners and edges compared to the center, is a significant challenge in wide-field astronomical surveys like the Evryscope. The individual star PSFs (which typically extend only a few pixels) are highly susceptible to slight increases in optical aberrations in this situation. The Robotilter solution resulted in a limiting magnitude improvement of 0.5 mag in the center of the image and 1.0 mag in the corners for typical Evryscope cameras, with less distorted and smaller PSFs (half the extent in the corners and edges in many cases). We describe the Robotilter mechanical and software design, camera alignment results, long-term stability, and image improvement. The potential for general use in wide-field astronomical surveys is also explored

    The social, cosmopolitanism and beyond

    Get PDF
    First, this article will outline the metaphysics of ‘the social’ that implicitly and explicitly connects the work of lassical and contemporary cosmopolitan sociologists as different as Durkheim, Weber, Beck and Luhmann. In a second step, I will show that the cosmopolitan outlook of classical sociology is driven by exclusive differences. In understanding human affairs, both classical sociology and contemporary cosmopolitan sociology reflect a very modernist outlook of epistemological, conceptual, methodological and disciplinary rigour that separates the cultural sphere from the natural objects of concern. I will suggest that classical sociology – in order to be cosmopolitan – is forced (1) to exclude non-social and non-human objects as part of its conceptual and methodological rigour, and (2) consequently and methodologically to rule out the non-social and the non-human. Cosmopolitan sociology imagines ‘the social’ as a global, universal explanatory device to conceive and describe the non-social and non-human. In a third and final step the article draws upon the work of the French sociologist Gabriel Tarde and offers a possible alternative to the modernist social and cultural other-logics of social sciences. It argues for a inclusive conception of ‘the social’ that gives the non-social and non-human a cosmopolitan voice as well

    Three K2 campaigns yield rotation periods for 1013 stars in Praesepe

    Get PDF
    We use three campaigns of K2 observations to complete the census of rotation in low-mass members of the benchmark, ≈670 Myr old open cluster Praesepe. We measure new rotation periods (Prot) for 220≲1.3 M☉ Praesepe members and recovery periods for 97% (793/812) of the stars with a Prot in the literature. Of the 19 stars for which we do not recover a Prot, 17 were not observed by K2. As K2’s three Praesepe campaigns took place over the course of 3 yr, we test the stability of our measured Prot for stars observed in more than one campaign. We measure Prot consistent to within 10% for >95% of the 331 likely single stars with ≥2 high-quality observations; the median difference in Prot is 0.3%, with a standard deviation of 2%. Nearly all of the exceptions are stars with discrepant Prot measurements in Campaign 18, K2’s last, which was significantly shorter than the earlier two (≈50 days rather than ≈75 days). This suggests that, despite the evident morphological evolution we observe in the light curves of 38% of the stars, Prot measurements for low-mass stars in Praesepe are stable on timescales of several years. A Prot can therefore be taken to be representative even if measured only once

    Evryscope and K2 Constraints on TRAPPIST-1 Superflare Occurrence and Planetary Habitability

    Get PDF
    The nearby ultracool dwarf TRAPPIST-1 possesses several Earth-sized terrestrial planets, three of which have equilibrium temperatures that may support liquid surface water, making it a compelling target for exoplanet characterization. TRAPPIST-1 is an active star with frequent flaring, with implications for the habitability of its planets. Superflares (stellar flares whose energy exceeds 1033 erg) can completely destroy the atmospheres of a cool star's planets, allowing ultraviolet radiation and high-energy particles to bombard their surfaces. However, ultracool dwarfs emit little ultraviolet flux when quiescent, raising the possibility of frequent flares being necessary for prebiotic chemistry that requires ultraviolet light. We combine Evryscope and Kepler observations to characterize the high-energy flare rate of TRAPPIST-1. The Evryscope is an array of 22 small telescopes imaging the entire Southern sky in g′ every two minutes. Evryscope observations, spanning 170 nights over 2 yr, complement the 80 day continuous short-cadence K2 observations by sampling TRAPPIST-1's long-term flare activity. We update TRAPPIST-1's superflare rate, finding a cumulative rate of superflares per year. We calculate the flare rate necessary to deplete ozone in the habitable-zone planets' atmospheres, and find that TRAPPIST-1's flare rate is insufficient to deplete ozone if present on its planets. In addition, we calculate the flare rate needed to provide enough ultraviolet flux to power prebiotic chemistry. We find TRAPPIST-1's flare rate is likely insufficient to catalyze some of the Earthlike chemical pathways thought to lead to ribonucleic acid synthesis, and flux due to flares in the biologically relevant UV-B band is orders of magnitude less for any TRAPPIST-1 planet than has been experienced by Earth at any time in its history

    Building the evryscope: Hardware design and performance

    Get PDF
    The Evryscope is a telescope array designed to open a new parameter space in optical astronomy, detecting shorttimescale events across extremely large sky areas simultaneously. The system consists of a 780 MPix 22-camera array with an 8150 sq. deg. field of view, 13″ per pixel sampling, and the ability to detect objects down to mg' ≃ 16 in each 2-minute dark-sky exposure. The Evryscope, covering 18,400 sq. deg. with hours of high-cadence exposure time each night, is designed to find the rare events that require all-sky monitoring, including transiting exoplanets around exotic stars like white dwarfs and hot subdwarfs, stellar activity of all types within our galaxy,nearby supernovae, and other transient events such as gamma-ray bursts and gravitational-wave electromagnetic counterparts. The system averages 5000 images per night with ~300,000 sources per image, and to date has taken over 3.0M images, totaling 250 TB of raw data. The resulting light curve database has light curves for 9.3M targets, averaging 32,600 epochs per target through 2018. This paper summarizes the hardware and performance of the Evryscope, including the lessons learned during telescope design, electronics design, a procedure for the precision polar alignment of mounts for Evryscope-like systems, robotic control and operations, and safety and performance-optimization systems. We measure the on-sky performance of the Evryscope, discuss its data analysis pipelines, and present some example variable star and eclipsing binary discoveries from the telescope. We also discuss new discoveries of very rare objects including two hot subdwarf eclipsing binaries with late M-dwarf secondaries (HWVir systems), two white dwarf/hot subdwarf short-period binaries, and four hot subdwarf reflection binaries. We conclude with the status of our transit surveys, M-dwarf flare survey, and transient detection

    Young and Eccentric: The Quadruple System HD 86588

    Get PDF
    High-resolution spectroscopy and speckle interferometry reveal the young star HD 86588 as a quadruple system with a three-tier hierarchy. The 0.″3 resolved binary A,B with an estimated period around 300 years contains the 8-yr pair Aa,Abc (also potentially resolvable), where Ab,Ac is a double-lined binary with equal components, for which we compute the spectroscopic orbit. Despite the short period of 2.4058 days, the orbit of Ab,Ac is eccentric (e = 0.086 ±0.003). It has a large inclination, but there are no eclipses; only a 4.4 mmag light modulation apparently caused by star spots on the components of this binary is detected with Evryscope. Assuming a moderate extinction of A V = 0.5 mag and a parallax of 5.2 mas, we find that the stars are on or close to the main sequence (age >10 Myr) and their masses are from 1 to 1.3 solar. We measure the strength of the lithium line in the visual secondary B which, together with rotation, suggests that the system is younger than 150 Myr. This object is located behind the extension of the Chamaeleon I dark cloud (which explains extinction and interstellar sodium absorption), but apparently does not belong to it. We propose a scenario where the inner orbit has recently acquired its high eccentricity through dynamical interaction with the outer two components; it is now undergoing rapid tidal circularization on a timescale of ∼1 Myr. Alternatively, the eccentricity could be excited quasi-stationary by the outer component Aa
    corecore